1.3.1 样片的制备
将样品粒度研磨至不大于74μm的分析试样,称取分析试样约10g,加入硼酸垫底,于压片机上以500MPa压力条件下压制30s,压制成粉末样片。用洗耳球吹去表面可能存在的颗粒物质。制备样片厚度应不少于3mm。样片表面需平整,无裂纹、无粉末脱落等缺陷。
1.3.2 试样分析
将制备的粉末压片置于单波长激发能量色散X射线荧光光谱仪中获取荧光强度信号,采用无标样全谱拟合-基本参数法进行无标定量分析,计算得出分析试样中元素含量。分析试样进行两次平行测定取其平均值。
2.结果与讨论
2.1 无标样全谱拟合算法
基本参数法分为两类,一是通过对已知元素和含量的标准物质,输入标准物质的元素和含量经过一系列计算拟合,确定基本参数算法;二是对未知样品定量分析。采用最小二乘拟合算法对未知样品实测谱拟合全谱[9]。最小二乘法是从误差拟合的角度对回归模型进行参数估计。将样品实际测量谱线分解为样品中各个单元素在相同样品基体情况下,样品中各个单元素相应含量下的理论谱线的叠加。因实际测量谱线测量结束后为固定值,如果假定元素初始含量,用假定含量解出该含量的理论谱线,用测量谱线对单元素理论谱线进行全谱匹配,匹配结果为一个新的含量,不断重复全谱匹配过程,直到元素含量收敛为样品中元素的实际含量。本文选择基于基本参数法(FP)的全谱拟合无标样定量算法进行分析。
含铁物料元素组成复杂,其基体元素成分变化会直接影响待测元素特征X射线强度的测量。低铁含量样品(为铁含量15%以下的含镍物料)铬元素检测情况表明,对于与含铁物料基体(一般铁含量在40%以上)相差较大的样品不宜直接利用含铁物料的检测条件进行检测,说明过大的基体差异会导致结果的明显偏差。利用无标样全谱拟合算法建立相应基体样品的结果校正曲线,不改变检测条件,可以消除明显的基体差异导致的结果偏差,保障检测结果的准确。选取含有不同含量的各有害元素的含铁物料,利用基于基本参数法的无标样全谱拟合算法进行分析,其检测结果与真值的拟合情况见表2。由表2可知,其R2均不小于0.9990。
表2 各元素基本参数法直接测定结果与真值的拟合情况
Tab.2 Fitting of Direct Measurement Results of Basic Parameters of Each Element with True Values
Element |
Number of samples |
Content range |
R2 |
Cd |
11 |
0.00082-0.112 |
0.9991 |
As |
15 |
0.0024-0.668 |
0.9990 |
Pb |
12 |
0.0073-0.795 |
0.9993 |
Hg |
4 |
0.0014-0.0089 |
0.9991 |
Cr(High iron content samples) |
10 |
0.015-1.84 |
0.9999 |
Cr(Low iron content samples) |
7 |
0.060-0.92 |
0.9991 |
2.2 背景及谱线权重优化
含铁物料检测中,背景来源主要包括入射X射线的康普顿散射和瑞利散射、探测器的康普顿散射逃逸效应、探测器的不完全电荷收集效应、光电子和俄歇电子逃逸效应等。因此,在采用基本参数法计算过程中需要通过扣背景来消除或降低背景对元素峰拟合的影响,但扣背景不足或过多均会影响元素检测结果的准确性。对样品号为Fe-1的含铁物料谱图进行背景优化,针对含铁物料的复杂基体复杂背景问题,为能够准确提取微量元素信号,建立了分段式多参数背景补偿Snip算法。如图1为Fe-1含铁物料背景优化谱图。图中下曲线为扫描Fe-1含铁物料原始谱图,上曲线为优化后谱图。经优化后的谱图,可提取出低谱峰信号强度。
图1 Fe-1样品背景优化谱图
Fig.1 Optimization spectrum of Fe-1 sample background
2.3 谱线选择及重叠干扰校正
选择待测元素特征谱线时应避免基体中共存元素的谱线干扰、和峰干扰、靶材的特征谱线及其康普顿谱逃逸峰干扰。光谱干扰可通过选择适当的分析线和采用干扰校正系数来解决。表3中给出了含铁物料中砷、铅、汞、铬、镉元素检测推荐谱线和干扰修正情况。
表3 含铁物料中微量元素的推荐分析线及干扰情况
Tab.3 Recommended Analysis Lines and Interference Conditions for Trace Elements in Ferrous Materials
Element |
Recommended spectral lines |
Participate in basic correction elements |
Spectral overlapping interference element lines and typical interference situations |
Interference correction method |
As |
Kα -line |
Fe、 Ca、Si、Al、Mn、K、O |
The Lα -line of Pb element overlaps with the Kα -line of As element |
Using theLβ -line of Pb element to calculate the content of Pb element, and then re analyzing the Kα -line of As element in overlapping peaks |
Pb |
Lβ -line |
Fe、 Ca、Si、Al、Mn、K、O |
The double peak of the Kα -line of Fe element overlaps with the Lβ -line of Pb element |
Algorithm of using full spectrum fitting matrix parameters method |
Hg |
Lα -line |
Fe、 Ca、Si、Al、Mn、K、O |
The overlapping peaks have no interference, but the Lα -line of Hg element is easily affected by the Kα -line and Kβ -line of Zn element, resulting in background interference |
The content of Zn element greater than 1% affects the determination of low content Hg element |
Cr |
Kα -line or Kβ -line |
Fe、 Ca、Si、Al、Mn、K、O |
The Kα -line of Cr element overlaps with the escape peak of Fe element's Kβ -line and the Kβ -line of V element, while the Kβ -line of Cr element overlaps with the Kβ -line of Mn element |
By calculating the content of Fe, V, and Mn elements, Cr can be further resolved in overlapping peaks |
Cd |
Kα -line |
Fe、 Ca、Si、Al、Mn、K、O |
The position where the Lβ1 - line of Pb element accumulates and doubles, and the position where the Lα -line of Pb element accumulates and doubles, will have a combined peak |
Deducting the effect of peak concentration by calculating the Pb element content |
2.4 方法检测下限及检出限
选择SiO2作为空白样,利用单波长激发能量色散X射线荧光光谱法对其重复测定11次,以3.14倍测定值的标准偏差(s)计算检出限(3.14s)[10]。方法的检测下限可定义为在特定基体某一可信度内对分析物能进行可靠确认和定量的最低浓度值,通常取3倍检出限,结果保留两位有效数字,见表4。
表4 方法检测下限及检出限
Tab.4 Method detection lower limit and detection limit
Sample number |
Determination of elements |
Hg |
As |
Pb |
Cd |
Cr |
1 |
0.00041 |
0.0016 |
-0.0012 |
-0.00015 |
-0.013 |
2 |
0.00037 |
0.0015 |
-0.00090 |
-0.00024 |
-0.013 |
3 |
0.00013 |
0.0016 |
-0.0010 |
-0.00024 |
-0.014 |
4 |
0.00026 |
0.0015 |
-0.0011 |
-0.00014 |
-0.013 |
5 |
0.00032 |
0.0015 |
-0.0013 |
-0.00023 |
-0.014 |
6 |
0.00015 |
0.0016 |
-0.00098 |
-0.00039 |
-0.013 |
7 |
0.00018 |
0.0014 |
-0.0010 |
-0.00023 |
-0.013 |
8 |
0.00015 |
0.0013 |
-0.0010 |
-0.00068 |
-0.013 |
9 |
0.00014 |
0.0013 |
-0.00093 |
-0.00021 |
-0.013 |
10 |
0.00039 |
0.0016 |
-0.0010 |
-0.00049 |
-0.013 |
11 |
0.00036 |
0.0013 |
-0.0010 |
-0.00021 |
-0.012 |
S |
0.00011 |
0.00011 |
0.00012 |
0.00017 |
0.00035 |
Detection limit |
0.00035 |
0.00036 |
0.00037 |
0.00052 |
0.0011 |
Method detection lower limit |
0.0011 |
0.0011 |
0.0011 |
0.0016 |
0.0033 |
2.5 方法精密度
选取含有有害元素的含铁物料样片,进行精密度试验。分析结果见表5。由表5可知,各元素RSD在3.19%~9.00%范围内,RSD均不大于10%,精密度良好。
表5 精密度试
Tab.5 Precision test(n=7) /%
Sample |
As |
Pb |
Cd |
Cr |
Hg |
average value |
RSD |
average value |
RSD |
average value |
RSD |
average value |
RSD |
average value |
RSD |
Fe-1 |
0.048 |
4.9 |
0.76 |
4.8 |
0.00092 |
8.7 |
0.056 |
4.8 |
/ |
/ |
Fe-2 |
0.0042 |
7.3 |
0.10 |
4.2 |
0.0038 |
7.0 |
0.018 |
3.5 |
|
|
Hg-3 |
0.022 |
4.0 |
0.21 |
3.2 |
/ |
/ |
0.032 |
4.7 |
0.0037 |
9.0 |
Hg-4 |
0.0085 |
3.4 |
0.18 |
4.9 |
/ |
/ |
0.0098 |
5.6 |
0.0083 |
4.5 |
2.6 方法正确度
选取各元素不同水平含铁物料样品,按本试验方法进行测定,并与ICP-MS法、直接测汞仪法进行结果比对,检测结果见表6~10。由检测结果可知,砷元素测定中Fe-2、GSB03-2854-2012及S-4含铁物料,铅元素测定中YSBC28786-2015含铁物料检测结果与其他方法或标示值偏差较大,主要原因为接近其方法检测下限。经正确度验证,该方法满足分析要求,可开展快速分析检测。
表6 砷元素检测比对结果
Tab.6 Comparison Results of Arsenic Element Detection /%
Samples |
This method |
ICP-MS measured value |
Fe-1 |
0.048 |
0.056 |
Fe-2 |
0.0042 |
0.0024 |
YSBC14722-98 |
0.11 |
0.10 |
YSBC28786-2015 |
0.0096 |
0.0095 |
GSB03-2854-2012 |
0.0064 |
0.0044 |
GSB03-2855-2012 |
0.22 |
0.22 |
GSB03-2856-2012 |
0.047 |
0.051 |
YSBC28785-2015 |
0.013 |
0.011 |
GSB03-1805-2005 |
0.096 |
0.11 |
S-4 |
0.0019 |
0.0008 |
S-1 |
0.094 |
0.097 |
S-2 |
0.014 |
0.010 |
S-3 |
0.093 |
0.072 |
GSB03-2857-2012 |
0.33 |
0.29 |
Fe-3 |
0.64 |
0.67 |
表7 铅元素检测比对结果
Tab.7 Comparison Results of Lead Element Detection /%
Samples |
This method |
ICP-MS measured value |
Fe-2 |
0.10 |
0.11 |
Fe-1 |
0.73 |
0.79 |
YSBC14722-98 |
0.099 |
0.120 |
YSBC28786-2015 |
0.0047 |
0.0073 |
GSB03-2854-2012 |
0.027 |
0.035 |
GSB03-2855-2012 |
0.16 |
0.18 |
GSB03-2856-2012 |
0.031 |
0.034 |
YSBC28785-2015 |
0.012 |
0.020 |
GSB03-1805-2005 |
0.085 |
0.11 |
S-1 |
0.44 |
0.47 |
S-3 |
0.18 |
0.20 |
GSB03-2857-2012 |
0.18 |
0.19 |
表8 汞元素检测比对结果
Tab.8 Comparison Results of Mercury Element Detection /%
Samples |
This method |
Direct mercury meter method |
Hg-1 |
0.0012 |
0.0014 |
Hg-2 |
0.0025 |
0.0030 |
Hg-3 |
0.0039 |
0.0045 |
Hg-4 |
0.0081 |
0.0089 |
表9 铬元素检测比对结果
Tab.9 Comparison Results of Chromium Element Detection /%
High speed iron containing materials |
Low iron element iron containing materials |
Samples |
This method |
ICP-MS measured value |
Samples |
This method |
ICP-MS measured value |
ISO306 |
0.015 |
0.017 |
GBW07146 |
0.13 |
0.12 |
ISO316 |
0.069 |
0.080 |
GBW07147 |
0.13 |
0.13 |
ISO315 |
0.031 |
0.036 |
GBW07148 |
0.073 |
0.060 |
ISO327 |
0.014 |
0.015 |
ZBK413 |
0.80 |
0.76 |
ZBK459 |
0.055 |
0.047 |
ZBK414 |
0.93 |
0.90 |
ZBK460 |
0.037 |
0.037 |
ZBK415 |
0.82 |
0.83 |
ZBK461 |
0.033 |
0.027 |
ZBK416 |
0.76 |
0.76 |
ZBK418 |
1.31 |
1.38 |
ZBK417 |
0.36 |
0.37 |
ZBK412 |
1.75 |
1.84 |
/ |
/ |
/ |
GBW07149 |
0.055 |
0.046 |
/ |
/ |
/ |
表10 镉元素检测比对结果
Tab.10 Comparison Results of Cadmium Element Detection /%
Sample |
This method |
ICP-MS measured value |
Fe-1 |
0.00083 |
0.00071 |
Fe-2 |
0.0036 |
0.0031 |
Cd-1 |
0.0034 |
0.0035 |
Cd-2 |
0.0048 |
0.0045 |
Cd-3 |
0.0063 |
0.0070 |
Cd-4 |
0.012 |
0.013 |
S-1 |
0.11 |
0.096 |
S-2 |
0.0014 |
0.0012 |
S-3 |
0.011 |
0.011 |
ZBK410 |
0.050 |
0.047 |
ZBK417 |
0.029 |
0.028 |
3.结 论
本文采用压片制样-单波长激发能量色散X射线荧光光谱法测定含铁物料中多种有害元素,利用基于基本参数法的无标样全谱拟合算法对目标元素的基体效应进行校正并进行检测分析。通过正确度验证可知,方法满足快速分析要求。
参考文献
[1] 褚宁,蒋晓光,吴享文,等.三元硝酸盐预氧化熔融制样-波长色散X射线荧光光谱法测定锌精矿中锌、铜、铅、铁、铝、钙和镁[J].中国无机分析化学,2021,11(3):47-55.
CHU Ning,JIANG Xiaoguang,WU Xiangwen,etal.Determination of Zinc,Copper,Lead,Iron,Alumium,Calcium and Magnesium in Zinc Sulfide Concentrate by X-ray Fluorescence Spectrometry with Ternary Nitrate Preoxidation and Fusion Sample Preparation[J].Chinese Journal of Inorganic Analytical Chemistry,2021,11(3):47-55.
[2] 王毅民,邓赛文,王祎亚,等.X射线荧光光谱在矿石分析中的应用评介——总论[J].冶金分析,2020,40(10):32-49.
WANG Yi-min,DENG Sai-wen,WANG Yi-ya,etal.Review on the application of X-ray fluorescence spectrometry in ores' analysis[J].Metallurgical Analysis,2020,40(10):32-49.
[3] 黄河清,王露,杨桂兰,等.便携式X射线荧光光谱法快速测定化肥中砷、镉、铅、铬、汞[J].中国无机分析化学,2022,12(4):28-33.
HUANG Heqing,WANG Lu,YANG Guilan,etal.Rapid Determination of As,Cd,Pd,Cr,Hg in Chemical Fertilizer by Portable X-ray Fluorescence Spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry,2022,12(4):28-33.
[4] 王钧婷,蒋学智.X射线荧光光谱分析含铁矿物中有害元素[J].甘肃冶金,2011,33(4):68-69.
WANG Jun-ting,JIANG Xue-zhi.The Analysis of Toxic Elements in Iron-bearing Mineral by X-ray Fluorescence Spectrometry[J].GANSU METALLURGY,2011,33(4):68-69.
[5] 程大伟.LiF双曲面全聚焦弯晶X射线仪器研制和应用[D].北京:钢铁研究总院,2021.
Cheng Dawei Development and application of LiF hyperboloid fully focused bent crystal X-ray instrument [D]. Beijing: General Institute of Iron and Steel Research, 2021
[6] 石洪玮,刘晓静,刘贵巧,等.单波长激发-能量色散X射线荧光光谱法检测蔬菜中多种重金属元素[J].中国无机分析化学,2022,12(4):1-8.
SHI Hongwei,LIU Xiaojing,LIU Guiqiao,etal.Determination of Heavy Metals in Vegetables by Single Wavelength Excitation-Energy Dispersive X-ray Fluorescence Spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry,2022,12(4):1-8.
[7] 杏艳,杨震,窦蓓蕾,等.预富集单波长激发能量色散X射线荧光光谱法现场测定地表水中10种重金属[J].中国无机分析化学,2022,12(4):18-27.
XING Yan,YANG Zhen,DOU Beilei ,etal.On-site Determination of 10 Heavy Metals in Surface Water by Pre-enriched Single-wavelength Excitation Energy Dispersive X-ray Fluorescence Spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry,2022,12(4):18-27.
[8] 杨金坤,苏明跃,郭芬,等.熔融制样-单波长激发能量色散X射线荧光光谱法测定铁矿石中主、次量成分[J].理化检验-化学分册,2022,58(9):993-997.
YANG Jinkun,SU Mingyue,GUO Fen,etal.Determination of Primary and Secondary Components in Iron Ore by Single Wavelength Excitation Energy Dispersion X-Ray Fluorescence Spectrometry with Melt Sample Preparation[J].Physical Testing and Chemical Analysis,2022,58(9):993-997.
[9] 刘明博,廖学亮,程大伟,等.基于基本参数法的EDXRF全谱拟合定量算法及其应用[J].光谱学与光谱分析,2021,41(9):2807-2811.
LIU Ming-bo, LIAO Xue-liang,CHENG Da-wei,etal.An EDXRF Quantitative Algorithm Based on Fundamental Parameters and Spectrum Unfolding[J].Spectroscopy and Spectral Analysis,2021,41(9):2807-2811.
[10] 范爽,郭超,张百慧,等.基于实验室间协作实验评估土壤中重金属能量色散X射线荧光光谱分析方法性能[J].冶金分析,2020,40(8):8-21.
FAN Shuang,GUO Chao,ZHANG Bai-hui,etal.Evaluation of analytical method performance for determination of heavy metals in soils by energy dispersive X-ray fluorescence spectrometry based on inter-laboratory collaborative experiments[J].Metallurgical Analysis,2020,40(8):8-21.